Chem. Ber. 102, 2707 – 2713 (1969)

Gerhard Rücker

Zur Struktur des Nardosinons, III^{1,2)}

Ableitung einer Konstitutionsformel für das Nardosinon und Struktur der Hydrierungsprodukte

Aus dem Institut für Pharmazeutische Chemie der Universität Münster

(Eingegangen am 25. Februar 1969)

Für das Nardosinon wird die Struktur 3 eines 5-Oxo-1.1.9.9a-tetramethyl-3a.4.5.7.8.9.9a.9b-octahydro-1*H*-naphtho[2.1-*c*][1.2]dioxols vorgeschlagen. Die Anwesenheit eines 1.2-Dioxolan-Ringes ergibt sich aus der 1.3-Stellung der Hydroxyl-Gruppen im Dihydronardosinondiol (6).

Aus der schon früher³⁾ abgeleiteten Teilstruktur 1 und der Konstitution 2 des thermischen (bzw. alkalischen) Spaltproduktes²⁾ ergibt sich für das Nardosinon die Struktur 3 eines 5-Oxo-1.1.9.9a-tetramethyl-3a.4.5.7.8.9.9a.9b-octahydro-1*H*-naphtho[2.1-*c*][1.2]dioxols. 3 kann den vom Aristolan abgeleiteten Sesquiterpenen⁴⁾ zugeordnet werden. Es besitzt einen 1.2-Dioxolan-Ring. 1.2-Dioxolane sind schon als stabile Verbindungen synthetisiert worden⁵⁾; sie wurden in der Natur noch nicht aufgefunden. Da 3 aus einer getrockneten Droge isoliert wurde, wird der Beweis für das Vorliegen in der frischen Pflanze noch erbracht werden müssen.

Die 1.2-Dioxolan-Struktur in 3 läßt sich durch den Beweis der 1.3-Stellung der Hydroxyl-Gruppen im Dihydronardosinondiol (6)³⁾ nachweisen. Die 1.2-Stellung kann ausgeschlossen werden, weil 6 nicht mit Perjodsäure reagiert. Einen Hinweis

Auszug aus der Habilitationsschrift, Univ. Münster 1968. (Über diese Ergebnisse wurde in einer vorläufigen Mitteilung berichtet: G. Rücker, Tetrahedron Letters [London] 1968, 3615.)

²⁾ II. Mitteil.: G. Rücker, Chem. Ber. 102, 2706 (1969), vorstehend.

³⁾ G. Rücker, Chem. Ber. 102, 2691 (1969).

⁴⁾ S. Furakawa und N. Soma, J. pharmac. Soc. Japan [Yakugakuzasshi] 81, 559, 565 (1961); S. Furakawa, ebenda 81, 570 (1961); G. Büchi, F. Greuter und T. Tokoroyama, Tetrahedron Letters [London] 1962, 827; J. Streith, P. Pesnelle und G. Ourisson, Bull. Soc. chim. France 1963, 518; J. Vrkoč, J. Křepinský, V. Herout und F. Šorm, Collect. czechoslov. chem. Commun. 29, 795 (1964); S. Carboni, A. D. Settimo, V. Malaguzzi, A. Marsili und P. L. Pacini, Tetrahedron Letters [London] 1965, 3017; S. D. Sastry, M. L. Maheswari, K. K. Chakravarti und S. Bhattacharyya, Tetrahedron [London] 23, 1997 (1967); L. Bauer, C. L. Bell, J. G. Gearien und H. Takeda, J. pharmac. Sci. 56, 336 (1967); K. E. Schulte, G. Rücker und G. Glauch, Planta med. [Stuttgart] 15, 274 (1967).

⁵⁾ R. Criegee und G. Paulig, Chem. Ber. 88, 712 (1955); G. B. Payne, J. org. Chemistry 23, 310 (1958); A. Rieche, E. Schmitz und E. Gründemann, Chem. Ber. 93, 2443 (1960); A. Rieche, Angew. Chem. 73, 57 (1961); A. Rieche und C. Bischoff, Chem. Ber. 95, 77 (1962).

auf eine 1.3-Anordnung der Hydroxyl-Gruppen erhält man aus der Bildung des Benzaldehydacetals 10c; solche Acetale entstehen bekanntlich bevorzugt, wenn die Bildung eines Sechsringes möglich ist⁶). Mit Thionylchlorid setzt sich 6 zum cyclischen

Sulfit 10a um, das im IR-Spektrum⁷⁾ die für sechs-gliedrige Sulfite charakteristischen Banden bei 1198 s und 991/cm s zeigt (Fünfringe: 1215/cm)^{8,9)}. Außerdem ergibt sich die 1.3-Stellung der OH-Gruppen in 6 aus der Umsetzung mit Phosgen zum

⁶⁾ R. M. Hann und C. S. Hudson, J. Amer. chem. Soc. 66, 1909 (1944); S. A. Barker und E. J. Bourne, J. chem. Soc. [London] 1952, 905; F. Micheel, Chemie der Zucker und Polysaccharide, Leipzig 1956; A. N. de Belder in Advances Carbohydrate Chem. 20, 219 (1965).

⁷⁾ s = stark; m = mittelstark; w = schwach.

⁸⁾ P. B. D. de la Mare, W. Klyne, D. J. Millen, J. G. Pritchard und D. Watson, J. chem. Soc. [London] 1956, 1813.

⁹⁾ H. H. Szmant und W. Emerson, J. Amer. chem. Soc. 78, 454 (1956).

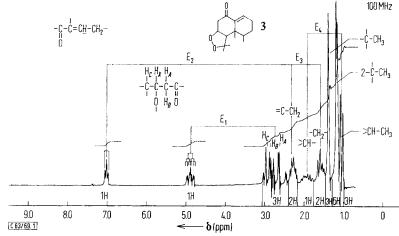
cyclischen Carbonat 10b, dessen Carbonyl-Bande im IR-Spektrum (1773/cm s) charakteristisch für einen sechs-gliedrigen cyclischen Kohlensäureester ist (Fünfringe: 1817/cm s; Siebenringe: 1757/cm s (CCl₄)^{10,11}). Weitere Hinweise auf die 1.2-Dioxolan-Struktur erhält man auch aus der Struktur der Dehydratisierungsprodukte (8, 9). Die für diesen Schluß wichtigen Strukturelemente von 8 und 9 wurden schon früher aus den NMR-Spektren abgeleitet³). Die 1.3-Stellung von Carbonyl-Gruppe und sekundärer Hydroxyl-Gruppe ergibt sich aus der Oxydation von 6 mit Chromtrioxid zu 12 und aus dem negativen Ausfall der Perjodsäure-Oxydation des Dihydronardosintriols (7). Die Chromsäure-Oxydation von 6 führt wahrscheinlich zunächst zum nicht isolierten β -Keto-Alkohol 11, der eine Retroketolkondensation 12) unter Bildung von 12 und Aceton (13) eingehen kann.

Ähnlich kann auch die Bildung von 2 aus 3 mit Natriumäthylat ²⁾ gedeutet werden. Der nach einem *De La Mare*-Mechanismus ¹³⁾ wahrscheinlich gebildete, nicht isolierte β-Keto-Alkohol 14 könnte ebenfalls eine Retroketolkondensation ¹²⁾ eingehen. Dagegen scheint bei der Bildung von 2 durch Kochen von 3 in Xylol ²⁾ ein radikalischer Mechanismus abzulaufen. Wie beim Zerfall von anderen Dialkylperoxiden ¹⁴⁾ könnte

$$6 \xrightarrow{\text{CrO}_3(\text{Pyridin})} \qquad \qquad \downarrow \\ \text{11} \qquad \qquad \downarrow \\ \text{12} \qquad 13$$

$$11 \qquad \qquad \downarrow \\ \text{NaOC}_2\text{H}_5 \qquad 3 \qquad \frac{140^\circ}{(\text{XyIoI})} \qquad \downarrow \\ \text{NaO} \qquad \downarrow \\$$

¹⁰⁾ Es wurden synthetisiert: Propandiol-(1.3)-carbonat, Pentandiol-(2.4)-carbonat, Butandiol-(1.4)-carbonat und die IR-Spektren unter den gleichen Bedingungen wie bei 10b gemessen.


¹¹⁾ J. L. Hales, J. I. Jones und W. Kynaston, J. chem. Soc. [London] 1957, 618.

¹²⁾ Weygand-Hilgetag, Organisch-Chemische Experimentierkunst, S. 948, J. A. Barth-Verlag, Leipzig 1964.

¹³⁾ N. Kornblum und H. E. De la Mare, J. Amer. chem. Soc. 73, 880 (1951).

¹⁴⁾ F. F. Rust, F. H. Seubold und W. E. Vaughan, J. Amer. chem. Soc. 70, 95 (1948); J. H. Raley, F. F. Rust und W. E. Vaughan, ebenda 70, 88, 1336, 2767 (1948); E. R. Bell, F. F. Rust und W. Vaughan, ebenda 72, 337 (1950).

das durch homolytische Spaltung der Peroxid-Bindung gebildete Biradikal 15 eine Stabilisierung durch Abspaltung von Aceton erfahren 15).

Das NMR-Spektrum (100 MHz) des Nardosinons (3)

Charakteristische Signale (in ppm) im NMR-Spektrum des Nardosinons (3) (Abbild.) und der Hydrierungsprodukte 4, 5, 6 und 7 a)

	-C-C-C-CH-	HA HX HCb) -C-C-C-C-C-	СН-О <i>Н</i> с)	C-OHc)	H ₃ C-CH(H ₃ C - C
3 (Abbild.)	7.02 t (1; J 4.0 Hz)	$δ_X$ 4.90; sep (1) $δ_A$ 2.57; $δ_B$ 2.92; $δ_C$ 2.95 (3; J_{AB} –18.1; J_{AX} 1.9; J_{BX} 7.4; J_{CX} 9.4 Hz)	-	_	1.02 d (3; <i>J</i> 6.0 Hz)	1.38 (3) 1.13 (3) 1.13 (3)
4	6.90 t (1; <i>J</i> 4.0 Hz)	δ_{X} 4.61; sex (1) δ_{A} 2.94; δ_{B} 2.95; δ_{C} 2.50 (3; J_{AB} -18.4; J_{AX} 9; J_{BX} 9; J_{CX} 3.6 Hz)	6.07 d (1; <i>J</i> 7 Hz)	6.68 s (1)	1.00 d (3; <i>J</i> 6 Hz)	1.55 (3) 1.38 (3) 1.05 (3)
6		$\delta_{\rm X}$ 4.50; quin (1) $\delta_{\rm A}$ 2.72; $\delta_{\rm B}$ 3.07; $\delta_{\rm C}$ 2.49 (3; $J_{\rm AB}$ -17.6; $J_{\rm AX}$ 4.5; $J_{\rm BX}$ 13.4; $J_{\rm CX}$ 5.2 Hz)	5.70 d (1; J 6 Hz)	5.17 s (1)	0.94 d (3; J 5.6 Hz)	1.78 (3 1.63 (3 0.82 (3
5c)	4.66 e)		5.70 (2)	4.15 (1)	0.78 d (3; J 6 Hz)	1.25 (6) 0.88 (3)
7d)	_		5.83 d (2)	4.30 (1)	0.78 d (3; J 6 Hz)	1.52 (3) 1.37 (3) 1.15 (3)

a) Tetramethylsilan als äußerer Standard. s = Singulett; d = Dublett; t = Triplett; qu = Quadruplett; quin = Quintett; sex = Sextett; sep = Septett. In Klammern die elektronisch integrierten Protonenzahlen.
 b) Berechnet nach A. A. Bothner-By und S. Castellano, Programm Laocoon II, Mellon Institute, Pittsburgh 1963.

c) In Hexadeuterodimethylsulfoxid; vgl. O. L. Chapman und R. W. King, J. Amer. chem. Soc. 86, 1256 (1964).

b) Berechnet nach A. A. Bothner-By und S. Castellano, Programm Laocoon II, Mellon Institute, Pittsburgh 1963. (Datenverarbeitungsanlage IBM 360/50, Rechenzentrum der Univ. Münster.) Die theoretischen Bandenlagen stimmen mit den gemessenen überein.

d) Gemessen in CDCl3 mit 20% Hexadeuterodimethylsulfoxid.

e) -0-C-C=CH

¹⁵⁾ F. F. Rust, F. H. Seubold und W. E. Vaughan, J. Amer. chem. Soc. 72, 338 (1950).

Die Strukturen der Hydrierungsprodukte des Nardosinons (6, 7, Nardosinondiol (4)³⁾ und Nardosintriol (5)) stehen mit ihren spektroskopischen Daten (Tab.) und mit ihren chemischen Eigenschaften in guter Übereinstimmung. Die Dehydratisierung von 5 führt ebenfalls zu 8 und 9. Wahrscheinlich bilden sich zunächst die nicht isolierten Allyl-Alkohole 16 bzw. 17, die sich zu den ungesättigten Ketonen 8 und 9 umlagern können.

Beschreibung der Versuche

Die Spektren wurden mit dem UV-Spektralphotometer RPQ 20 A (Zeiss), dem IR-Spektrophotometer Modell 21 (Perkin-Elmer), dem NMR-Spektrometer A 60 mit Spin-Entkoppler V 6058 A (Varian), dem Massenspektrometer RMU-6D (Hitachi-Perkin-Elmer) 16 und dem Polarimeter LEPA 1 (Zeiss) aufgenommen. Zur Dünnschichtchromatographie verwendete man Kieselgel PF $_{254}$ (Merck). Die Schmelzpunkte (unkorrigiert) wurden mit dem Kofler-Heizmikroskop bestimmt.

Perjodsäure-Oxydation von Dihydronardosinondiol (6)3,17): 0.25 g (1 mMol) 6 ließ man 1 Stde. mit 20 ccm einer Lösung von 5 g Orthoperjodsäure in 1 l 20 proz. Essigsäure stehen. Nach Zugabe von 25 ccm 25 proz. Kaliumjodid-Lösung wurde mit n/10 Na₂S₂O₃ titriert (Stärke). 36.1 ccm. Blindwert: 36.0 ccm.

Benzaldehydacetal des Dihydronardosinondiols (10c): 0.10 g (0.39 mMol) 6 ließ man 12 Stdn. unter Lichtausschluß in 2 ccm frisch dest. Benzaldehyd in Gegenwart von 0.25 g Zinkchlorid stehen. Dann setzte man 5 ccm Wasser zu und trennte die wäßr. Phase ab. Man versetzte mit 3 ccm Äther und schüttelte nacheinander mit 5 proz. Natriumhydrogencarbonat-Lösung (2 mal 10 Min.) und Wasser. Farblose Nadeln. Schmp. 173° (Äther). Ausb. 0.075 g (56%).

IR (KBr): 3050 s, 1504 w, 1478 w, 1038 m, 754 s, 708 s (C_6H_5-); 1710 (CO); 2970 s; 1455 m; 1388 m; 1292 m; 1282 m; 1265 w; 1225 m; 1153 m; 1114 m; 1095 m; 1045 m; 1008 w; 957 w; 948 w; 900/cm w.

NMR (CDCl₃): δ 7.4–7.8 (m; C₆H₅-); 6.08 (s; (-O-)₂CH-C₆H₅); 4.75 (quint; CH-O-); 3.80–2.50 (m); 1.90 (s; \Rightarrow C-CH₃); 1.70 (s; \Rightarrow C-CH₃); 1.05 (d; *J* 6.0 Hz; CH-CH₃); 0.88 (s; \Rightarrow C-CH₃); 1.1–2.5 ppm (m) im Verhältnis 5:1:1:5:3:3:3:3:6.

Massenspektrum (120°) m/e (%): 342 (M+; 17); 235 (7); 218 (27); 177 (80); 162 (23); 136 (17); 134 (20); 122 (33); 108 (100); 107 (40); 106 (37); 104 (67); 94 (50); 91 (70); 80 (60); 66 (44).

```
C_{22}H_{30}O_3 (342.5) Ber. C 77.15 H 8.83 Gef. C 77.05 H 8.70 Mol.-Gew. 342 (massenspektrometr.)
```

Mol.-Gew. nach D₂O-Austausch-Versuch³⁾: 342 (keine aktiven Wasserstoff-Atome).

3.6-Dioxo-1.1.10.10a-tetramethyl-perhydronaphtho[2.1-d][1.3.2]dioxathiin (10a): 0.50 g (1.97 mMol) 6 in 4 ccm absol. Pyridin wurden bei 10° tropfenweise mit 0.3 ccm Thionyl-chlorid versetzt. Nach 1 stdg. Stehenlassen bei Raumtemp. wurde Eiswasser zugegeben, ausgeäthert und die Äther-Phase zweimal mit Na₂CO₃-Lösung und mit Wasser gewaschen. Farblose Nadeln. Schmp. 158–160° (Äther). Ausb. 0.20 g (34%).

IR (CCl₄): 1198 s, 991 s (6-gliedriges Sulfit)^{8,9)}; 3030 s; 3000 s; 2910 m; 1412 m; 1455 m; 1433 m; 1399 m; 1372 m; 1348 m; 1300 m; 1264 m; 1223 m; 1147 m; 1130 m; 1113 m; 1083 m; 1054 m; 968 m; 947 m; 937 m; 923 m; 900 m; 883 m; 850/cm m.

¹⁶⁾ Die Elektronenenergie betrug, wenn nicht anders angegeben, 70 eV. Feste Stoffe wurden direkt in die Ionenquelle eingeführt.

¹⁷⁾ Bezeichnung nach IUPAC-Nomenklatur: 3-Hydroxy-1-oxo-4a.5-dimethyl-4-[α-hydroxy-isopropyl]-1.2.3.4.4a.5.6.7.8.8a-decahydro-naphthalin.

NMR (CDCl₃): $\delta_{\mathbf{X}}$ 4.95 (m); $\delta_{\mathbf{C}}$ 3.73 (d); $\delta_{\mathbf{A},\mathbf{B}}$ 2.8-3.3 ($J_{\mathbf{C}\mathbf{X}}$ 5.5 Hz); 3.0; 2.0 (s; $-\mathbf{O}-\mathbf{C}(\mathbf{CH}_3)_2$; 1.2-1.9 (m); 1.03 (d; $\mathbf{CH}-\mathbf{CH}_3$); 0.93 ppm (s; $\mathbf{C}-\mathbf{CH}_3$) im Verhältnis 1:1:2:1:6:7:3:3.

Massenspektrum (115°) m/e (%): 300 (M+; 30 eV); 236 (4); 221 (7); 193 (4); 178 (28); 152 (36); 109 (100); 95 (53); 82 (46); 67 (44); 55 (56); 43 (79).

C₁₅H₂₄O₄S (300.4) Ber. C 60.00 H 8.06 S 10.66

Gef. C 59.10 H 8.40 S 10.55 Mol.-Gew. 300 (massenspektrometr.)

Mol.-Gew. nach D₂O-Austausch-Versuch³⁾: 300 (keine aktiven Wasserstoff-Atome).

Bei der Hydrierung von 0.15 g (0.5 mMol) 10a in 90 proz. Methanol (Pd-CaCO₃-Katalysator) keine Wasserstoff-Aufnahme.

4a.5-Dimethyl-4-isopropenyl- Δ^2 -octalon-(1) (9)

- a) Nach I.c.3)
- b) 0.1 g (0.33 mMol) 10a wurden mit 1.5 ccm konz. Salzsäure und einigen Tropfen Aceton 24 Stdn. stehengelassen. Nach Verdünnen mit viel Wasser wurde ausgeäthert und schicht-chromatographisch (0.5 mm) getrennt (Hexan/Essigester 75:25). Die Fraktion mit $R_{\rm F}$ 0.87 ergab farblose Kristalle. Schmp. 43–44° (Äther).
- c) 0.8 g (3.2 mMol) 5 wurden mit 6 g umgeschmolzenem Kaliumhydrogensulfat 10 Min. auf $150-160^{\circ}$ erhitzt, in Wasser aufgenommen, ausgeäthert und schichtchromatograpbisch (1 mm) getrennt (Hexan/Essigester 8:2). Die Fraktion mit R_F 0.46 wurde eingedampft. Die Substanzen nach a), b) und c) waren im UV-, IR-, NMR- und Massenspektrum identisch.
- 4a.5-Dimethyl-4-isopropyliden- Δ^2 -octalon-(1) (8): Die Fraktion mit R_F 0.30 der Darstellung von 9 (Methode c)) war im UV-, IR-, NMR- und Massenspektrum identisch mit der durch Dehydratisierung von 6 dargestellten Substanz³⁾.

3.6-Dioxo-1.1.10.10a-tetramethyl-perhydronaphtho [2.1-d]-m-dioxin (10b): 0.15 g (0.59 mMol) 6 und 0.3 g Antipyrin in 6 ccm CHCl₃ (Uvasol) wurden bei -10° unter Rühren tropfenweise mit 20 ccm einer Lösung von *Phosgen* in Toluol (20 proz.) versetzt. Nach Stehenlassen über Nacht bei Raumtemp. wurde Eiswasser zugetropft, die organische Phase i. Vak. (1 Torr) eingedampft und schichtchromatographisch (1 mm; Hexan/Essigester 1:1) getrennt. Die Fraktion mit R_F 0.40 ergab farblose Nadeln vom Schmp. 155—160°.

IR (CCl₄): 1773/cm s (CO).

Mol.-Gew. 280 (massenspektrometr.).

4a.5-Dimethyl-decalindion-(1.3) (12)

- a) Nach 1.c.2).
- b) Die bei der Chromtrioxid-Oxydation von $7^{3)}$ erhaltene Lösung wurde nach der Titration $(n/10 \text{ Na}_2\text{S}_2\text{O}_3)$ ausgeäthert, die Äther-Phase mit 5 proz. Natronlauge ausgeschüttelt und diese nach Ansäuern ausgeäthert. Farblose Kristalle. Schmp. $148-152^\circ$ (Äther). Ausb. 0.05 g (70%). Mit der aus Äther umkristallisierten Substanz nach a) ergab sich im Misch-Schmp. keine Depression. Die Identität folgte außerdem aus dem UV-, IR und Massenspektrum 2).

Dihydronardosintriol (7)18)

a) 4.0 g (15.5 mMol) 6 wurden in 50 ccm absol. Tetrahydrofuran unter Rühren zu einer Suspension von 0.45 g LiAlH₄ in 50 ccm Tetrahydrofuran getropft. Nach Zugabe von Wasser ätherte man aus. Ausb. 2.2 g (55%).

¹⁸⁾ Bezeichung nach IUPAC-Nomenklatur: 1.3-Dihydroxy-4a.5-dimethyl-4-[α-hydroxy-iso-propyl]-1.2.3.4.4a.5.6.7.8.8a-decahydro-naphthalin.

- b) Die Hydrierung wurde mit Natriumborhydrid in wäßr. Äthanol ausgeführt.
- c) 5 wurde in 90 proz. Methanol hydriert (PtO₂-Katalysator). Farblose Kristalle. Schmp. 145-147° (Tetrahydrofuran).

UV: keine Absorption.

IR (KBr): 3310 s, 1150 m, 1058 m, 1023 s (OH); 1385 m, 1365 m, 1180 w, 1157/cm w ((CH₃)₂C $\stackrel{\checkmark}{\sim}$).

NMR: Tab. S. 2710.

Massenspektrum (140–170°) m/e (%): 256 (M⁺; 3); 238 (4); 223 (3); 180 (6); 162 (23); 147 (14); 110 (77); 95 (48); 83 (57); 81 (46); 59 (68); 55 (56); 43 (100); 41 (98).

C₁₅H₂₈O₃ (256.4) Ber. C 70.27 H 11.01 Gef. C 69.93 H 10.84 Mol.-Gew. 256 (massenspektrometr.)

Aktiver Wasserstoff: 0.96% (ber. 2.5 aktive Wasserstoff-Atome). Mol.-Gew. nach D₂O-Austausch³⁾: 259 (3 aktive Wasserstoff-Atome).

Chromtrioxid-Oxydation (s. 12, Methode b)): Ber. 2 sek. OH: 6.3 ccm, gef. 6.8 ccm. Perjodsäure-Oxydation: 0.072 g (28.1 mMol) 7 wurden wie 6 umgesetzt. Gef. 36.0 ccm.

Nardosintriol (5)¹⁹: 0.25 g (1 mMol) 3 wurden in 20 ccm absol. Äther bei 10° innerhalb 25 Min. unter Rühren mit einer Suspension von 0.08 g $LiAlH_4$ in 20 ccm Äther versetzt. Dann wurde 1 Stde. bei Raumtemp. gerührt und 1 Stde. gekocht (Rückflußkühlung). Nach Zugabe von Eis-Wasser wurde ausgeäthert und die Äther-Phase mit gesätt. Natriumchlorid-Lösung und Wasser gewaschen. Farblose Nadeln. Schmp. 187–189° (Äther). Ausb. 0.14 g (56%). [α] $_{10}^{10}$: +12.0° (c = 1.68; Äthanol).

UV (Äthanol): keine Absorption.

Blindwert 36.2 ccm $n/10 \text{ Na}_2\text{S}_2\text{O}_3$.

IR (KBr): 3300 s, 1350 m, 1330 m, 1272 s, 1257 m, 1227 s, 1145 s (OH); 1620 w, 857 m, 827 m (C=C); 1385 m, 1378 m, 1165 m ((CH₃)₂C \checkmark); 1435 m; 1194 s; 1155 s; 1103 m; 1090 m; 1068 m; 1055 m; 1042 m; 1027 m; 990 m; 965 m; 912 m; 763 w; 748 m; 668/cm m. NMR: Tab. S. 2710.

Massenspektrum (140°) m/e (%): 254 (M+; 2); 236 (22); 221 (2); 218 (2); 203 (4); 193 (3); 185 (4); 178 (18); 163 (50); 160 (18); 145 (38); 136 (33); 121 (36); 118 (36); 109 (38); 107 (36); 93 (35); 91 (40); 82 (35); 81 (32); 77 (27); 67 (33); 59 (100).

C₁₅H₂₆O₃ (254.4) Ber. C 70.82 H 10.31 Gef. C 69.87 H 10.47 Mol.-Gew. 254 (massenspektrometr.)

Aktiver Wasserstoff: 0.74% (ber. 2.1 aktive Wasserstoff-Atome). Mol.-Gew. nach D₂O-Austausch³⁾: 257 (3 aktive Wasserstoff-Atome).

[63/69]

¹⁹⁾ Bezeichnung nach IUPAC-Nomenklatur: 1.3-Dihydroxy-4a.5-dimethyl-4-[α-hydroxy-isopropyl]-1.2.3.4.4a.5.6.7-octahydro-naphthalin.